Sign Up for a Free Account
  • Updated 01.11.2024
  • Released 03.30.1995
  • Expires For CME 01.11.2027

Primary carnitine transporter deficiency

Introduction

Overview

Primary carnitine transporter deficiency is an autosomal recessive inherited disorder caused by a defect of the plasmalemmal high-affinity carnitine transporter, OCTN2, in the SLC22A5 gene. This formerly lethal disease of childhood is characterized by progressive infantile-onset hypertrophic or dilatative cardiomyopathy, weakness, recurrent hypoglycemic hypoketotic encephalopathy, and failure to thrive. These children have very low plasma and tissue concentrations of carnitine with microvesicular lipid storage in muscle, heart, and liver and a severe renal leak of primary carnitine, usually with absence of an abnormal dicarboxylic aciduria. Early diagnosis and treatment with high-dose oral primary carnitine supplementation is critical and lifesaving and reverses the end-stage cardiomyopathy, myopathy, and episodes of hypoglycemia. These individuals may be weaned off their anti-failure cardiac medications but are lifelong dependent on primary carnitine therapy. Early primary carnitine therapy from birth prevents the development of the disease phenotype, and the author and colleagues have shown through mutational studies that this disease is widely geographically distributed. The carrier frequency is 1% in the Japanese population, and carriers may present with cardiomyopathy as adults, making this a potentially significant risk factor for adult heart disease. Surprisingly, 11 asymptomatic affected mothers of affected children have been identified, suggesting that the expression of the disease may be influenced by multifactorial or epigenetic factors.

Key points

• Primary carnitine transporter deficiency is an autosomal recessive inherited disorder caused by a defect of the plasmalemmal high-affinity carnitine transporter, OCTN2, in the SLC22A5 gene.

• This formerly lethal disease of childhood is characterized by progressive infantile-onset hypertrophic or dilatative cardiomyopathy, weakness, recurrent hypoglycemic hypoketotic encephalopathy, and failure to thrive.

• These children have very low plasma and tissue concentrations of carnitine with microvesicular lipid storage in muscle, heart, and liver and a severe renal leak of primary carnitine, usually with absence of an abnormal dicarboxylic aciduria.

• Early diagnosis and treatment with high-dose oral primary carnitine supplementation is critical and lifesaving and reverses the end-stage cardiomyopathy, myopathy, and episodes of hypoglycemia.

• These individuals may be weaned off their antifailure cardiac medications but are lifelong dependent on primary carnitine therapy.

Historical note and terminology

Carnitine deficiency was first described in 1973 (28), and patients were subsequently divided into two groups. In one group were those with "systemic carnitine deficiency", who had recurrent episodes of hypoglycemic, hypoketotic encephalopathy ("Reye-like" syndrome) beginning in infancy or early childhood, and low concentrations of carnitine in their serum, muscle, and liver. In the other group were patients with "myopathic carnitine deficiency," who had progressive lipid storage myopathy beginning in childhood or later in life, and the carnitine deficiency was confined to skeletal muscle (26; 03). In the mid-1970s, improved methods of measuring fatty acid oxidation enzymes allowed many previously diagnosed carnitine deficiency cases to be attributed to a variety of intramitochondrial beta-oxidation defects, with an associated secondary carnitine deficiency (131). For example, many patients initially diagnosed as having systemic carnitine deficiency were found to have medium-chain acyl-CoA dehydrogenase deficiency (19; 45). In addition, certain patients formerly diagnosed as having primary myopathic carnitine deficiency have now been diagnosed as having other defects, such as short-chain acyl-CoA dehydrogenase deficiency (149; 147).

The first probable case of a primary carnitine transporter defect was described by Chapoy and colleagues in a 3-year-old boy. He initially presented at 3 months of age with hypoketotic hypoglycemic encephalopathy, hepatomegaly, and cardiomegaly, and was later documented to have less than 5% of plasma, muscle, and liver carnitine concentrations (16). This boy responded dramatically to oral carnitine supplementation, as evidenced by increased muscle strength, relief of cardiomyopathy, partial repletion of carnitine concentrations in plasma and muscle, and complete repletion in the liver. The definition of primary carnitine deficiency, as suggested by Stanley, was subsequently based on the following criteria:

(1) The metabolic disorder is caused directly by inadequate carnitine.
(2) It is accompanied by impaired fatty acid oxidation.
(3) It is corrected when carnitine concentrations are returned to normal.
(4) It is not secondary to a defect of mitochondrial beta-oxidation (131).

Theoretical causes of primary carnitine deficiency put forward by Rebouche and Engel included:

(1) Defective biosynthesis and dietary intake.
(2) Defective intestinal absorption.
(3) Defective transport affecting uptake or release of carnitine from tissues.
(4) Renal loss due to decreased tubular reabsorption or increased excretion of carnitine.
(5) Increased degradation (113).

No evidence for defective carnitine biosynthesis (110), defective absorption, or excessive degradation (114) was found in several patients with "systemic" carnitine deficiency. However, all of these patients were subsequently found to have medium-chain acyl-CoA dehydrogenase deficiency. In mammals, carnitine degradation is not of any quantitative importance and is primarily accomplished by bacteria in the gut (09).

The first evidence for a defect in the cellular uptake of carnitine was offered in 1988. Eriksson and colleagues documented carnitine deficiency in cultured skin fibroblasts from a 4-year-old girl with cardiomyopathy and found intermediate carnitine concentrations in the fibroblasts of the asymptomatic mother (32). Carnitine uptake was studied directly by Treem and colleagues in fibroblasts from an infant girl who was suffering from multiple symptoms; she presented as hypoketotic, with hypoglycemic coma, markedly decreased carnitine concentrations in plasma, liver, and muscle, and normal acyl-CoA dehydrogenase activities (146). Carnitine administration corrected the defect in fasting ketogenesis and restored normal carnitine concentrations in plasma and liver, but not in muscle. Since then, more than 20 cases have been described, where the cellular defect in carnitine uptake has been documented in cultured skin fibroblasts (40; 133).

This is an article preview.
Start a Free Account
to access the full version.

  • Nearly 3,000 illustrations, including video clips of neurologic disorders.

  • Every article is reviewed by our esteemed Editorial Board for accuracy and currency.

  • Full spectrum of neurology in 1,200 comprehensive articles.

  • Listen to MedLink on the go with Audio versions of each article.

Questions or Comment?

MedLink®, LLC

3525 Del Mar Heights Rd, Ste 304
San Diego, CA 92130-2122

Toll Free (U.S. + Canada): 800-452-2400

US Number: +1-619-640-4660

Support: service@medlink.com

Editor: editor@medlink.com

ISSN: 2831-9125