Sign Up for a Free Account

06.24.2014

Retinitis pigmentosa

What is retinitis pigmentosa?
Retinitis pigmentosa is the name given to a group of inherited eye diseases that affect the retina (the light-sensitive part of the eye). Retinitis pigmentosa causes the breakdown of photoreceptor cells (cells in the retina that detect light). Photoreceptor cells capture and process light helping us to see. As these cells breakdown and die, patients experience progressive vision loss.

The most common feature of all forms of retinitis pigmentosa is a gradual breakdown of rods (retinal cells that detect dim light) and cones (retinal cells that detect light and color). Most forms of retinitis pigmentosa first cause the breakdown of rod cells. These forms of retinitis pigmentosa, sometimes called rod-cone dystrophy, usually begin with night blindness. Night blindness is somewhat like the experience normally sighted individuals encounter when entering a dark movie theatre on a bright, sunny day. However, patients with retinitis pigmentosa cannot adjust well to dark and dimly lit environments.

What are the symptoms of retinitis pigmentosa?
As the disease progresses and more rod cells breakdown, patients lose their peripheral vision (tunnel vision). Individuals with retinitis pigmentosa often experience a ring of vision loss in their periphery, but retain clear central vision. Others report the sensation of tunnel vision, as though they see the world through a straw. Many patients with retinitis pigmentosa retain a small degree of central vision throughout their life.

Other forms of retinitis pigmentosa, sometimes called cone-rod dystrophy, first affect central vision. Patients first experience a loss of central vision that cannot be corrected with glasses or contact lenses. With the loss of cone cells also comes disturbances in color perception. As the disease progresses, rod cells degenerate causing night blindness and peripheral vision.

Symptoms of retinitis pigmentosa are most often recognized in children, adolescents and young adults, with progression of the disease continuing throughout the individual's life. The pattern and degree of visual loss are variable.

What causes retinitis pigmentosa?
Retinitis pigmentosa is an inherited disorder, and therefore not caused by injury, infection or any other external or environmental factors. People suffering from retinitis pigmentosa are born with the disorder already programmed into their cells. Doctors can see the first signs of retinitis pigmentosa in affected children as early as age 10. Research suggests that several different types of gene mutations (changes in genes) can send faulty messages to the retinal cells which leads to their progressive degeneration. In most cases, the disorder is linked to a recessive gene, a gene that must be inherited from both parents in order to cause the disease. But dominant genes and genes on the X chromosome also have been linked to retinitis pigmentosa. In these cases, only one parent has passed the disease gene. In some cases, a new mutation causes the disease to occur in a person who does not have a family history of the disease. The disorder also can show up as part of other syndromes, such as Bassen-Kornzweig disease or Kearns-Sayre syndrome.

How is retinitis pigmentosa treated?
There is no known cure for retinitis pigmentosa. However, there are few treatment options such as light avoidance and/or the use of low-vision aids to slow down the progression of retinitis pigmentosa. Some practitioners also consider vitamin A as a possible treatment option to slow down the progression of retinitis pigmentosa. Research suggests taking high doses of vitamin A (15,000 IU/day) may slow progression a little in some people, but the results are not strong. Taking too much vitamin A can be toxic and the effects of vitamin A on the disease is relatively weak. More research must be conducted before this is a widely accepted form of therapy.

Research is also being conducted in areas such as gene therapy research, transplant research, and retinal prosthesis. Since retinitis pigmentosa is usually the result of a defective gene, gene therapy has become a widely explored area for future research. The goal of such research would be to discover ways healthy genes can be inserted into the retina. Attempts at transplanting healthy retinal cells into sick retinas are being made experimentally and have not yet been considered as clinically safe and successful. Retinal prosthesis is also an important area of exploration because the prosthesis, a man-made device intended to replace a damaged body part, can be designed to take over the function of the lost photoreceptors by electrically stimulating the remaining healthy cells of the retina.Through electrical stimulation, the activated ganglion cells can provide a visual signal to the brain. The visual scene captured by a camera is transmitted via electromagnetic radiation to a small decoder chip located on the retinal surface. Data and power are then sent to a set of electrodes connected to the decoder. Electrical current passing from individual electrodes stimulate cells in the appropriate areas of the retina corresponding to the features in the visual scene.

What do we know about heredity and retinitis pigmentosa?
Since retinitis pigmentosa is an inherited disorder, it can potentially affect another member of the family. With retinal cells being among the most specialized cells in the human body, they depend on a number of unique genes to create vision. A disease-causing mutation in any one of these genes can lead to vision loss. Researchers have discovered over 100 genes that can contain mutations leading to retinitis pigmentosa. Approximately 50 percent of retinitis pigmentosa cases are isolated and have no previous family history. The cause of these cases cannot be explained. Other cases of retinitis pigmentosa, where family history has been determined, fall into three main categories: autosomal recessive, autosomal dominant, and X-linked recessive.

Autosomal recessive retinitis pigmentosa occurs when both parents are unaffected carriers of the same defective gene. The chances of a child being affected is one in four. This means the affected child must inherit the defective gene from each parent. The chances of a parent having an unaffected child who would be a carrier of the defective gene is one in two. The chance of parents having a child completely free of the retinitis pigmentosa gene is one in four.

In autosomal dominant retinitis pigmentosa, the disease is present in males or females only when a single copy of the gene is defective. Typically, one of the parents is affected by the disease. The chance is one in two of any given offspring being affected by the disease, if the affected parent has one normal and one defective gene.

X-linked recessive retinitis pigmentosa may occur in offspring in two ways. The fathers can be affected or mothers can be carriers of the defective gene. If the father is affected, all sons will be unaffected and all daughters will be carriers. If the mother is the carrier, 1 in 2 sons will be affected and 1 in 2 daughters will be carriers. In families with the X-linked type, only males are affected, while females carry the genetic trait but do not experience serious vision loss.

Additional resources
National Eye Institute

Information Office
31 Center Drive MSC 2510
Bethesda, MD 20892-2510
(301) 496-5248
https://www.nei.nih.gov

Retinitis Pigmentosa International
P.O. Box 900
Woodland Hills, CA 91365
Tel (818) 992-0500
https://www.rpinternational.org/

The Foundation Fighting Blindness
11435 Cronhill Drive
Owings Mills, MD 21117-2220
Toll Free: (800) 683-5555
TDD: (800) 683-5551
https://www.blindness.org

Retina International
Ausstellungsstrasse 36
CH-8005 Zürich
Switzerland
Tel: + 41 (0) 44 444 10 77
https://www.retina-international.org

This information was developed by the National Human Genome Research Institute.

National Human Genome Research Institute. Learning About Retinitis Pigmentosa. Available at: https://www.genome.gov/13514348. Last accessed December 31, 2017.

The information in this document is for general educational purposes only. It is not intended to substitute for personalized professional advice. Although the information was obtained from sources believed to be reliable, MedLink Corporation, its representatives, and the providers of the information do not guarantee its accuracy and disclaim responsibility for adverse consequences resulting from its use. For further information, consult a physician and the organization referred to herein.

Questions or Comment?

MedLink®, LLC

3525 Del Mar Heights Rd, Ste 304
San Diego, CA 92130-2122

Toll Free (U.S. + Canada): 800-452-2400

US Number: +1-619-640-4660

Support: service@medlink.com

Editor: editor@medlink.com

ISSN: 2831-9125